Gregor Mendel

Modern genetics began in the mid-1800s in an abbey garden, where a monk named
 documented inheritance in peas

What is	s inheritance:	
_	used good experimental design	
-	used	_ analysis
	collected data & counted them	
-	excellent example of	
Medel's Work		
Bred pe	ea plants	
-	cross-pollinate	
_	raised seed & then observed	
-	allowed offspring to	& observed next generation

Mendel Collected Data for 7 Pea Traits

Each of these traits is represented by a specific allele on a specific chromosome.

What did Mendel's Findings Mean?

• Some traits mask others

–&flower colors a	re separate traits that do not bler
• purple x white = light purple	
purple	_ white
functional	
 affects characteristic 	
masks other alleles	
no noticeable effect	
allele makes a non-functioning protein	
Genotype vs. Phenotype	
• Difference between how an organism "looks" & its genetics	
–	_
 Form of the trait that gets expressed "what you see" 	
 An organism's actual alleles 	_
Environment Effect on Genes	
Phenotype is controlled by both	&
• Examples:	
• Humans:	
Hydrangea:	
Arctic Fox:	
Phenotype is a result of both genetics and environment.	
*Siamese cats:	
Inheritance of genes	
On the chromosomes passed from &	to offspring are genes

Unit 5 Guided Genetics	Notes			
_	may be	info	ormation	
_	may be	info	ormation	
Remember hov	V Se	eparates the alleles in	nto	cells?
****	****This separation is call	ed the Law of		********* *
Effect of Genes	5			
• Genes	come in different versions			
_	<u>brown vs. blue eyes</u>			
-	brown vs. blonde hair			
-		_ = different forms o	of a gene	
Homozygous =		Heter	ozygous =	
Homozygous d	ominant =			
Homozygous re	ecessive =			
Heterozygous =	=			
Ww:	Tt:		RR:	
rr:	Aa:		Bb:	
aa:	BB:		Ee:	
Ss:	bb:		Yy:	
Genes Affect h	ow you look			
Where did the	blue eyes go??			
Why did the blu	ue eyes stay??			
Where did the	blue eyes come from??			
Genes come in	"versions"			
•	vseye col	or		
• <u>Alleles</u>	(different	of a gene)		
Alleles are inhe	rited	fro	m each parent	
• <u>brown</u>	& <u>blue</u> eye colors are separ	rate & do not blend		
-	either have	_or	eyes, not a blend	

Some alleles mask others

_____eye color masked ______

People who have			aı	nd			are called
	(they ca	rry the rec	cessive	allele,	but do not express	the trait)
•	c	an pass	on allele	to offs	pring		
How does this work?							
Paired chromosomes	have same	e kind of					
 but may be d 	ifferent						
	are inherite	ed as ser	oarate uni	ts			
What is a trait?							
For each trait, an org copies	anism inhe of a gene, ₋	rits	from e	each pa	irent		
 – a 1 set of chroi 	mosomes fr	o rom eac	rganism i h parent	nherits			
•			= 2 sets (copies)	of chro	omosomes	
							owers
homologous chromosomes	1 from	Mom				Locus for flower-color	Homologous pair of
	1 from	Dad				gene	chromosomes
NA - 1						Allele for white fi	owers
Making gametes							
BB = brown eyes	bb	= blues	eyes		Bb	= brown eyes	
Dominant =							
\rightarrow brown is	ove	r blue	-	→ blue	is		to brown
Recessive =							
Remember meiosis!							
How do we say it?							
2 of the	_alleles						
BB = brown eyes		bb	= blues e	yes			
homozygous dominant		homozy	gous rece	essive			
2 different							

Bb = brown eyes

Male = sperm

Genetics vs. appearance

- There can be a difference between how an organism looks & its genetics
 - appearance or trait = ______
 - brown eyes vs. blue eyes
 - genetic makeup = _____
 - BB, Bb, bb
- 2 people can have the same appearance but have different genetics: BB vs Bb

Making crosses

- Can represent alleles as letters
 - flower color alleles \rightarrow P or p
 - true-breeding _____ peas \rightarrow PP
 - true-breeding _____ peas $\rightarrow pp$

Рр х Рр

рр х рр

A Punnett Square is a diagram used to identify possible combinations resulting from a mating.

This married couple is considering having their first baby.

The man is heterozygous for a disease. The woman is also heterozygous for the disease.

The couple comes to you for counseling. They want you to know the chances they will have a healthy baby.

You know that the disease they carry is a <u>recessive</u> trait and that both parents are <u>heterozygous</u>.

Not-so-bad Traits determined by Simple Inheritance

- _____ (dominant form)
- Widow's peak (dominant form)
- Hitchhiker's thumb (dominant form)
- _____ (dominant form)
- Taste PTC (dominant form)
- _____ (dominant form)
- _____ (dominant form)

No major consequences for these inherited conditions!

Recessive Genetic Disorders

- Must inherit ______ faulty genes (one from mom, one from dad)
- Traits can be ______

Cystic fibrosis

- Any of 1000 different mutations of one gene found on chromosome 7
- Buildup of ______ produces thick ______ around organs and in lungs
- Weakened ______ system
- Life expectancy: 35 years
- Found mostly in ______

Tay-Sachs

- Mutation of one gene on chromosome 15
- Lack of an _____
- Buildup of ______ on nervous tissue and in brain
- Symptoms vary, but include hearing loss and pain
- _____ cells die
- Die ______ most do not live past _____ years old
- European ______

Phenylketonuria

- Deletion of one gene on chromosome 12
- Protein buildup (______)
- Kills nerve cells
- Tested for at birth
- Solution: diet restricting _____ (found in diet foods)
- All demographics

Most Common Allele	Dominant	or	Recessive

EITHER ONE!!!!

• Because an allele is dominant does not mean...it is better, or it is more common

Dominant Genetic Disorders

Only need ______ dominant allele for it to be expressed

- Most not lethal
 - Chromosome 7
 - Extra _____ (fingers or toes)
 - All demographics
 - 1/500 people have extra digits

• Huntington's Disease

- Additions to gene making it longer
- Chromosome 4

– _____ onset (30-50 years old)

Why is this bad? ______

- Brain dies
 - Loss of muscle control, _____, pain

HUNTINGTON'S DISEASE: _____

A man has Huntington's disease. He does not know this because Huntington's doesn't show symptoms until later in life, after ______ have been produced.

His wife does not have Huntington's and knows that it has never been diagnosed in her family pedigree.

What are the chances their first born child will have the disease?

Do the Punnett Square for one parent who is HOMOZYGOUS DOMINANT for Huntington's disease and one that is HOMOZYGOUS RECESSIVE.

What are the chances their offspring will have the disease?

What are the consequences of knowing you have the gene for Huntington's disease?

Dihybrid Crosses = _____

NOT A BIG DEAL. YOU HAVE OVER ______ GENES THAT CODE FOR PROTEINS

EACH ONE HAS A _______---THAT'S A LOT OF LETTERS

Heterozygous for both traits:

AaBb x AaBb

A = tall	a = short	B = brown hair	b = blond hair
/	u 311010		

Testcross

TESTCROSS = a cross between any gene pair and the ______ recessive condition for that trait.

R? х rr

What would be the genotype needed to testcross a heterozygous purple-flowering pea plant?

b. Pp a. PP c. pp

Beyond Mendel's Laws of Inheritance

Extending Mendelian genetics

- Mendel worked with a ______ system
 - peas are genetically simple
 - most traits are controlled by _____ gene
 - each gene has only ______ version
 - 1 completely ______(A)
 - 1_____(a)
- But it's usually not that simple!

Incomplete dominance

- Hybrids have "in-between" appearance
 - _____
 - − RR = red flowers \rightarrow _____
 - − rr = white flowers \rightarrow _____
 - − Rr = pink flowers \rightarrow _____

Make 50% less color

MATE SECOND GENERATION:

Codominance

- _____ dominance
 - Chickens
 - A black-feathered chicken is crossed with a white-feathered chicken.
 - All of the babies are white with black speckling. (checkered chicken)

• Both white and black show up equally.

Mate a black rooster with white hen

Mate two checkered chicken

Human Codominance Example

- Sickle Cell Disease
 - Alleles
 - Normal red blood cell (_____)
 - Sickle red blood cell (_____)
 - 1 in ______ African Americans carry allele

•

- If two HbS ______ are inherited (HbSHbS), a person will be fully affected by disease
 - Can be fatal

NORMAL RED BLOOD DRAWING

SICKLE RED BLOOD CELL DRAWING

WHAT IS THE FUNCTION OF A RED BLOOD CELL?

IS THIS FUNCTION DISRUPTED BY SICKLE CELL?

Sickle Cell Trait

- If only one HbS allele is inherited (HbAHbS), the person has sickle cell trait
 - Produce both normal and sickle red blood cells
 - Usually not affected by the symptoms
 - IMMUNITY TO MALARIA
 - Sickle cell allele originated in West Africa where malaria is common
 - Malaria passed on by mosquitoes
 - Plasmodium (malaria) cannot set up residence in sickle red blood cell

SICKLE CELL PUNNETT SQUARES

Heterozygous male and homozygous recessive female. Phenotypic ratio and genotypic ratio.

Heterozygous male and homozygous recessive female. Phenotypic ratio and genotypic ratio.

Homozygous dominant male and heterozygous female. Phenotypic ratio and genotypic ratio.

Multiple Alleles

- More than one allele to select from.
 - Blood "types" can be _____, ____, or ____

 - The alleles to make these types include I^A, I^B and i.
 - "i" is the ______ allele and I^A and I^B are both ______.
 - So to get...
 - Type A you must have ______
 - Type B you must have ______
 - Type AB you must have ______ (CODOMINANCE)
 - Type O you must have ______

Blood

Blood cells have antigens and antibodies.

______ are tiny receptors on the outside of the blood cell that matches the "type."

_____ are what the cell doesn't like (which is anything different from the "type.")

Draw a red blood cell here:

What is the purpose of red blood cells?

What does RBC stand for?

What must you inherit to have the O blood type?

What must you inherit to have AB blood type?

What is a phenotype?

What is a genotype?

phenotype	genotype	antigen	antibodies	donation
		on RBC	in blood	status
A		antigens on surface of RBC	antibodies	Receive
В		antigens on surface of RBC	antibodies	Receive
АВ		antigens on surface of RBC	antibodies	
0		on surface of RBC	<u>anti-A & anti-B</u> antibodies	

Genetics of Blood Types

Blood Typing Punnett Squares

Heterozygous A dad with homozygous B mom. Phenotypic ratio and genotypic ratio.
]
O dad with O mom. Phenotypic ratio and genotypic ratio.

O dad with an AB mom. Phenotypic ratio and genotypic ratio.

Heterozygous B dad with O mom. Phenotypic ratio and genotypic ratio.

Heterozygous A dad with heterozygous A mom. Phenotypic ratio and genotypic ratio.

One gene: <u>Many</u> effects?

- The genes that we have covered so far _______
- But most genes are ______

Inheritance pattern of Achondroplasia

1

Many genes: One trait

- inheritance
- additive effects of many genes

Humans

- -
 - -

Human skin color

- AaBbCc x AaBbCc
 - _____ of shades
 - most children = intermediate skin color
 - some can be very light & very dark
 - _____!!!

Coat color in other animals

- 2 genes: E,e and B,b
 - color (E) or no color (e)

SEX and GENES

- Women & men are very different, but just a few genes create that difference
- In mammals = _____
 - X&Y
 - 2 X chromosomes = _____: XX
 - X & Y chromosome = _____: XY
 - X only = XO (Turner's Syndrome)

Nondisjunction

- Failure of ______ pairs to separate properly during meiosis
- _____ chromosomes or sister chromatids

- Autosomes or sex chromosomes
- Can be diagnosed using a ______

Karyotype

0		7C)()))()	(
	Mor KH M	ปร่า		4 . 0 N	11		
6	· 중 제제 전한 전체 전교 강렬 7 8 9 10 11 12	6 7 8	9	10 11	12		
Å Å 13	14 15 16 17 18	11 () () 13 14 15	11 (5 16	L)I 17 18			
₿ € 19	20 21 22 X Courtesy of Dr. K. Phelan, Greenwood Cenetic Center. Noncommercial, educational use only.	19 20	21 22	y	x		
SEX:		SEX:					
Aneup	loidy						
•	numb	er of chromosomes	within a	cell			
٠	Can be or						
Monos	somy						
Missin	g chromosome in a pair				1 6 00		
Turner	's Syndrome	2) K	1	;)	3	23	•
•	Missing 2nd sex chromosome	XIII		К	11	ļ	
•	Short, broad chest, low set ears, sterile,	>6 11 1	1 81	11	ŝŝ.		
•	amenorrhea (no period) Most spontaneous abort during pregnancy 1/2500 births		a d a	22		¢	Y
Trisom	Ŋ						
•	conies	of one chromosome	in a set				
•	Down's syndrome, Patau syndrome, Klinefelte	er's syndrome	ZWK99024 KEY				
Down'	s Syndrome		(ICON)			3400 F	1005
٠	Trisomy)e 96	44 47 40 10 10 10	80	
٠	Low IQ, obese, slow development, heart defe	cts, poor eyesight		7 8	9 10 8 8	u ÊE	12
•	Mother usually older		13 5 8 19	14 15 3 8 8 8 20 21	16	17 X	18 8 Y

- All demographics equally affected
- _____ children in US

Patau Syndrome

- Trisomy _____
- Cleft lip, extra digits, mental retardation, large triangular nose, central nervous system malformed
- Most children _____ within first year of life
- 1/5000 births

Klinefelter's Syndrome

- All _____
- Extra X chromosome (_____)
- Sterile, increased breast tissue, increased risk of breast cancer
- ______ supplement
- 1/500 males

Another X-linked Disorder

Fragile X Syndrome

- Caused by a ______repeat on the X chromosome
- Chromosome ______ very easily
- Protruding ears, learning disabilities, poor speech, social anxiety, short attention span, long face
- •
- All races

Sex-linked traits

_

- Sex chromosomes have other genes on them, too
 - especially the _____ chromosome
 - blood doesn't
 - Duchenne muscular dystrophy in humans
 - _____
 - red-green color blindness
 - see green & red as shades of gray

Sex-Linked Punnett Squares

Father who has color-blindness with mother who is a carrier. Phenotypic ratio and genotypic ratio.

	Г
	L

Father who is not color-blind with mother who is color-blind. Phenotypic ratio and genotypic ratio.

Father who is not color-blind with mother who is a carrier. Phenotypic ratio and genotypic ratio.

	Father who does not have hemophilia with a mother who is a carrier. Phenotypic ratio and genotypic ratio.

	Father who has hemophilia with a mother is homozygous normal. Phenotypic ratio and genotypic ratio.

Pedigree = family record for one specific trait.

Sex-linked traits = genes for these traits are carried on the sex chromosomes.

The gene for Red-Green colorblindness is carried on the X

Why are most sex-linked traits carried on the X chromosome?

Reading a Pedigree

Analyzing a Pedigree Interactive http://hiphered.mcgraw-hill.com/sites/0072485949/student view0/chapter3/interactive activity.html

PEDIGREE ACTIVITY LAB