Biology EOC Highlight Review

Organic Compounds

- All living things are made of organic compounds.
- · Contain the element Carbon
- Carbohydrates, Proteins, Lipids, Nucleic Acids

C

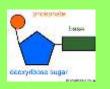
Carbohydrates

- Monomermonosaccharide
- Function- energy source and structure
- Tests: glucose-Benedicts starch- Iodine
- Ex. Cellulose, glycogen, starch

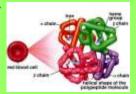
fructose

Lipids

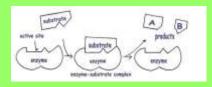
- · Made of fatty acids and glycerol
- · Function- energy storage and insulation
- Tests: brown paper test
- Examples: fats and steroids


Lipid vs. water

Nucleic Acids

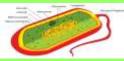


- · Monomer- nucleotide
- Function- carry genetic information
- Ex. DNA and RNA


Proteins

- · Monomer- amino acids
- Function- building and repairing cells, communication, transport, and regulation
- · Tests- Biurets
- Examples: enzymes, hemoglobin

Enzymes


- · Catalysts in living things
- · Specific to a particular substrate
- · Reusable
- · Affected by temperature and pH

Cells

Prokaryotes

- Simple, no membrane bound organelles
- Bacteria only
- One circular chromosome
- Includes: chromosome, ribosomes, and plasma membrane
- · Circular DNA: Plasmids

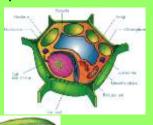
Eukaryotes

- Membrane bound organelles
- · Plants and Animals
- True nucleus containing chromosomes

Nucleus

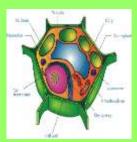
- · "Control Center"
- · Contains chromosomes

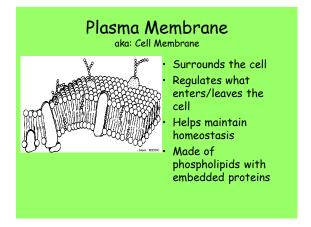
Mitochondria

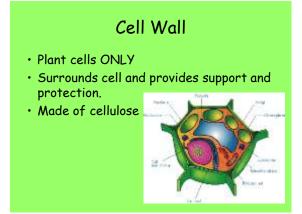

Singular: Mitochondrion

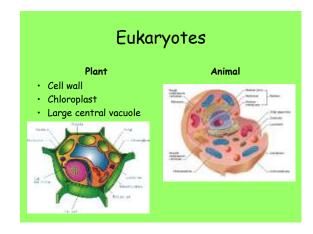
- "Powerhouse" of the cell
- Produces energy in the form of ATP
- Site of Aerobic respiration

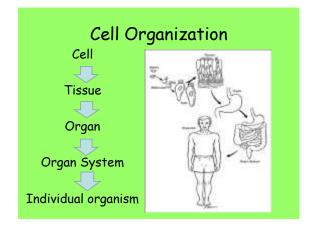
Chloroplast

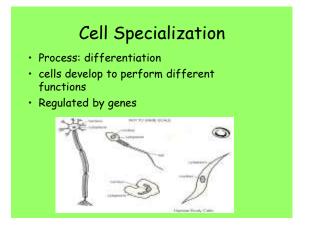

- Site of photosynthesis
- · Plant cells ONLY
- Contains the pigment chlorophyll

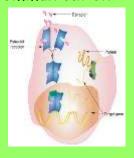


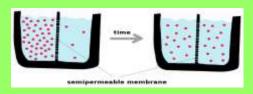

Vacuole


- Storage of excess materials
- Water, sugars, and waste
- Plant cells usually contain one large vacuole




Ribosomes Proteins are synthesized Found in both prokaryotes and eukaryotes Proteins are synthesized Truckers The contract of the contract




Cell to Cell Communication

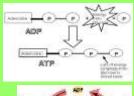
- Chemical Signals (hormones) can be sent from one cell to another
- Receptor proteins on the plasma membrane receive the signal


Diffusion

- Form of passive transport (NO ENERGY NEEDED) across a membrane
- Solutes move from high concentration to low concentration

Osmosis

Diffusion of water (also passive transport)

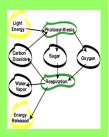


Active Transport

- Particles moving against the concentration gradient which REQUIRES ENERGY (ATP)
- Low concentration to high concentration

ATP

- ()
- Energy storing molecule
- Can be used for quick energy by the cell
- Energy is stored in the phosphate bonds


Photosynthesis

- SUNLIGHT, Water and Carbon Dioxide used to produce Glucose and Oxygen
- · 6H₂O+6CO₂→C₆H₁₂O₆+6O₂
- · Occurs in the chloroplast

Aerobic Respiration

- Used to release energy (ATP) for cellular use
- · C6H12O6+6O2→6H2O+6CO2+ ATP
- · Occurs in the mitochondria

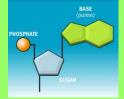
Anaerobic Respiration

aka Fermentation

- Does not require Oxygen
- also used to release energy, but not as efficient as aerobic respiration (less ATP)
- Products include CO2 and lactic acid or alcohol
- Two Types: Alcoholic Fermentation and Lactic Acid Fermentation

Autotroph vs. Heterotroph

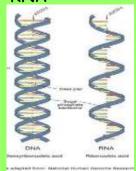
- Obtain energy from the environment
- Photosynthesis or chemosynthesis
- · "Producers"



- Obtain energy from other living things
- · "Consumers"

DNA / RNA

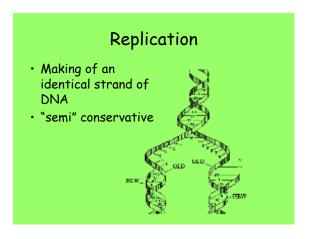
- · Carry genetic information
- · Made of a chain of nucleotides
- Nucleotides contain a sugar, phosphate, and a nitrogen base

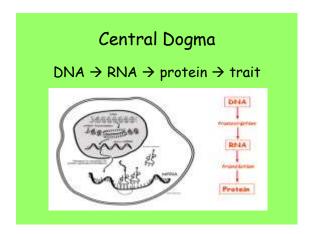

DNA / RNA

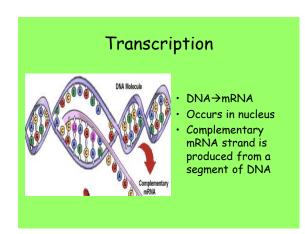
DNA

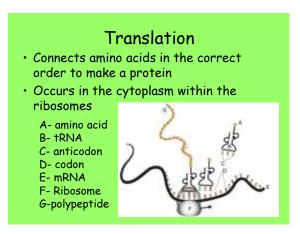
- · Double stranded
- · "Double Helix"
- Four base pairs: ATGC
- · Sugar is Deoxyribose
- · Found in nucleus

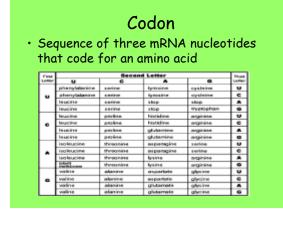
RNA

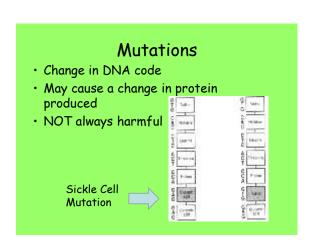

- · Single stranded
- Four base pairs: AUCG
- · Sugar is Ribose

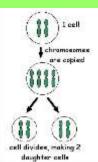


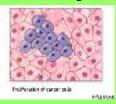

Base Pair Rule



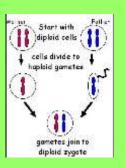

 In DNA, Adenine always pairs with Thymine, and Guanine always pairs with Cytosine



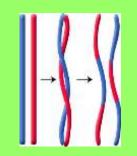



Mitosis

- · Cell division
- Produces two identical diploid daughter cells
- Occurs in body cells to grow and repair

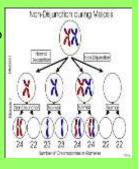

Cancer

- Error in cell growth with causes uncontrolled cell growth
- · Has environment and genetic variables



Meiosis

- · Cell division
- Produces four different haploid daughter cells (gametes)
- Occurs in sex cells to form gametes


Crossing Over

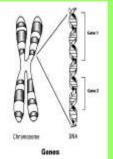
- Homologous chromosomes exchange parts of their DNA
- Creates variation in gametes

Nondisjunction

- Homologous chromosomes fail to separate during meiosis
- Can lead to Down Syndrome, Turners Syndrome, and Klinefelters Syndrome

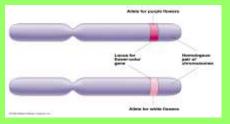
Asexual vs. Sexual Reproduction

Asexual


- · One parent
- · Identical offspring
- Variation only thru mutations
- Examples: budding, fragmentation, fission

Sexual

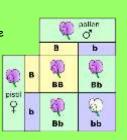
- Two parents
- Offspring different from parents
- · More variation
- Fertilization (fusion of gametes)


Inheritance

- Traits are specific characteristics inherited from parents
- · Genes are the factors that determine traits
- The different forms of a gene are called alleles

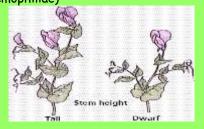
Dominant/Recessive Alleles · Dominant alleles are expressed, if

present, and recessive are hidden

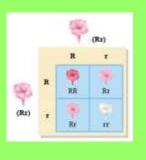

Genotype actual alleles an individual has for a trait

Homozygous

- · Both alleles are the same
- Ex. BB or bb


Heterozygous

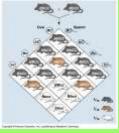
- · Both alleles are different
- Ex. Bb


Phenotype

· The actual characteristic displayed by the individual (ex. brown eyes, Hemophiliac)

Incomplete Dominance

 Heterozygote shows a blending of the dominant and recessive phenotypes


Codominance

- · Heterozygote expresses BOTH dominant and recessive traits
- · Ex. Roan animals

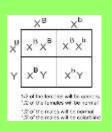
Polygenic Traits

- Traits are influenced by more than one gene
- · Ex. skin color

Multiple Alleles

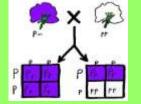
- More than two alleles for a trait (an individual still only inherits two)
- Ex. Blood Type (IA,IB, i)

type $A = I^AI^A$ or I^Ai

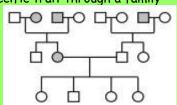

type B = I^BI^B or I^Bi

type AB= IAIB

type O = ii


Sex Linked Traits

- Sex Chromosomes
 - Female = XX
 - Male = XY
- Sex linked traits are carried on the X chromosome
- Ex. Hemophilia, red-green colorblindness


Test Cross

- used to determine the phenotype of an unknown dominant individual
- uses a homozygous recessive individual as the "test"

Pedigree

- · similar to a family tree
- Shows pattern of inheritance of a specific trait through a family

Karyotype

- Picture of someone's chromosomes
- Can detect chromosomal disorders

Ex. Down Syndrome, Klinefelter's Syndrome, and Turners Syndrome

Human Genome Project

- Sequencing of human DNA
- Being used to develop gene therapies

Gel Electrophoresis

- Technique used to separate molecules (DNA or proteins) based on their size
- Sometimes called a DNA fingerprint
- Used to analyze and compare DNA

Recombinant DNA

- Cell with DNA from another source
- Bacteria used to produce human insulin
- Human gene inserted into bacterial plasmid

Transgenic Organism

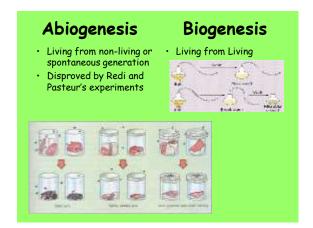
- An organism with a gene from another source
- used to improve food supply, research, and healthcare

Clone


- An organism made from one cell of another organism
- A genetically identical copy

Origin of Life

- · Abiotic earth LACKED Oxygen
- · Early organims anaerobic prokaryotes


Miller and Urey Experiment recreating The abiotic atomospere

Endosymbiotic Theory

- · Eukaryotic cells evolved from prokaryotes
- Early prokaryotes engulfed other prokaryotes and developed symbiotic relationships
- Evidence includes mitochondria and chloroplast have prokaryotic type DNA

Natural Selection

- · Theory of Evolution
- Fit organisms survive, reproduce, and pass on traits

Requirements:

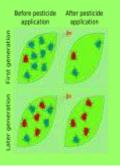
- Variation
- · Competition

Adaptations

- Trait that increases survival
- · For Example,
 - Beaks that make it easier to eat insects
 - Bright flowers to attract pollinators
 - Vascular tissue in plants to adapt to life on land

Evidence for Evolution

- · Fossil Record
- · Biochemical Similarities
- Shared anatomical structures


Speciation

- Evolution of a new species
- must be isolation between populations

Antibiotic and Pesticide Resistance

 Populations will eventually become resistant to pesticides and antibiotics with overuse

Coevolution

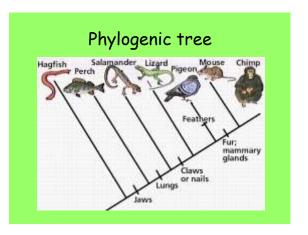
Two organisms evolve in response to each other

Ex. Flowering plants and their pollinators

Binomial Nomenclature

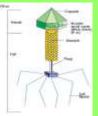
- Two word naming system
- Scientific name is much smaller than full classification
- Uses Genus and Species names only (not full classification of Kingdom, Phylum, Class, Order, Family, Genus, Species)

· Ex. Dogs: Canis familiaris



Dichotomous Keys

- Used to identify organisms
- Paired set of questions with two choices

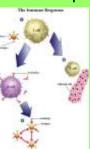


Viruses

- · Not considered living things
- Pathogens that can mutate to resist vaccines
- Ex. HIV, Influenza, Smallpox

Genetic Disorders and the Environment

 Many diseases have both genetic and environmental factors


 Ex. Cancer, diabetes, PKU

Immune Response

B-cells

- Fight antigens in body fluids
- B-cells make antibodies
- Make memory cells after exposure to antigen

T-cells

- Fight pathogens inside living cells
- May help Bcells to make antibodies
- Make memory cells after exposure to pathogen

Immunity

Passive Immunity

- Antibodies are introduced into the body
- · Short term
- Such as mother transfers antibodies to infant through breast feeding

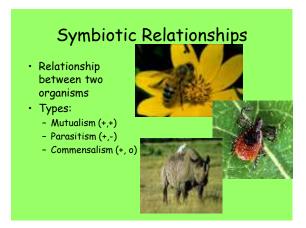
Active Immunity

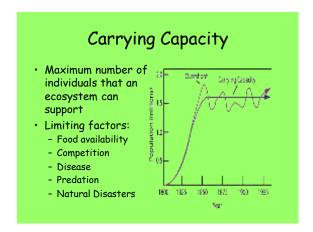
- Antibodies are acquired when an immune response is activated in the body
- · Long term
- Ex. Vaccines are weak/dead antigens that are introduced to the body

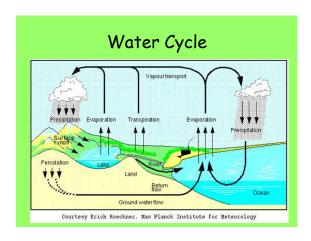
Parasites

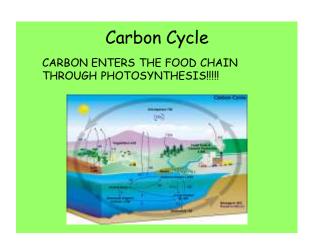
- Lives on or within a host
- Benefits while causing harm to the host
- Ex. Plasmodium causes malaria (genetic influencecarriers of sickle cell are resistant to malaria)

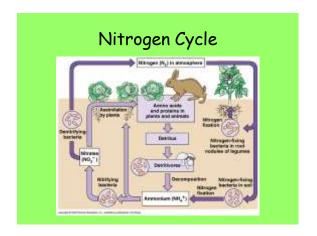
Toxins

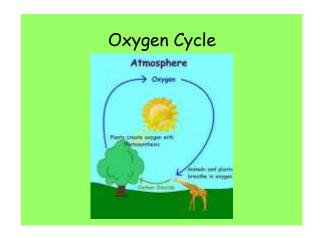

- Chemical that causes harm to the body
- Can be man-made or produced by microorganisms
- Ex. Mercury and Lead

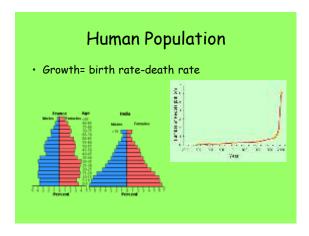

Ecosystems

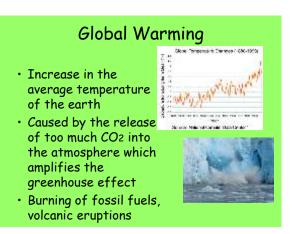

- Collection of abiotic (nonliving) and biotic (living) factors in an area
- Together they influence growth, survival, and productivity of an organism

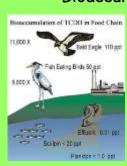





Predation • Predator eats prey • Evolve in response to one another






Trophic Levels Steps in a food chain/web Energy passes from one organism to another About 10% of the energy at one level passes to the next

Bioaccumulation

- An increase in environmental toxins at higher tropic levels
- Ex. DDT and birds of prey

Innate Behavior

- Behaviors an animal is born with
- Includes suckling, migration, hibernation
- Ex. weaving of spider webs

Learned Behavior

- Behavior an animal acquires during its lifetime
- Includes
 - Habituation
 - Conditioning
 - Trial and error

Social Behavior

- Communication between individuals of the same species
- Can be courtship, territorial or chemical (pheromones)

